请输入关键字
请输入关键字
订购
*国家
中国
美国
中国香港
中国澳门
中国台湾
阿尔巴尼亚
阿尔及利亚
阿根廷
阿拉伯联合酋长国
阿鲁巴
阿曼
阿塞拜疆
阿森松岛
埃及
埃塞俄比亚
爱尔兰
爱沙尼亚
安道尔
安哥拉
安圭拉
安提瓜和巴布达
奥地利
奥兰群岛
澳大利亚
巴巴多斯
巴布亚新几内亚
巴哈马
巴基斯坦
巴拉圭
巴勒斯坦领土
巴林
巴拿马
巴西
白俄罗斯
百慕大
保加利亚
北马里亚纳群岛
贝宁
比利时
冰岛
波多黎各
波兰
波斯尼亚和黑塞哥维那
玻利维亚
伯利兹
博茨瓦纳
不丹
布基纳法索
布隆迪
朝鲜
赤道几内亚
丹麦
德国
迪戈加西亚岛
东帝汶
多哥
多米尼加共和国
多米尼克
俄罗斯
厄瓜多尔
厄立特里亚
法国
法罗群岛
法属波利尼西亚
法属圭亚那
法属南部领地
梵蒂冈
菲律宾
斐济
芬兰
佛得角
福克兰群岛
冈比亚
刚果(布)
刚果(金)
哥伦比亚
哥斯达黎加
格恩西岛
格林纳达
格陵兰
格鲁吉亚
古巴
瓜德罗普
关岛
圭亚那
哈萨克斯坦
海地
韩国
荷兰
荷属加勒比区
荷属圣马丁
黑山
洪都拉斯
基里巴斯
吉布提
吉尔吉斯斯坦
几内亚
几内亚比绍
加拿大
加纳
加纳利群岛
加蓬
柬埔寨
捷克
津巴布韦
喀麦隆
卡塔尔
开曼群岛
科科斯(基林)群岛
科摩罗
科索沃
科特迪瓦
科威特
克罗地亚
肯尼亚
库克群岛
库拉索
拉脱维亚
莱索托
老挝
黎巴嫩
立陶宛
利比里亚
利比亚
联合国
列支敦士登
留尼汪
卢森堡
卢旺达
罗马尼亚
马达加斯加
马恩岛
马尔代夫
马耳他
马拉维
马来西亚
马里
马其顿
马绍尔群岛
马提尼克
马约特
毛里求斯
毛里塔尼亚
美国本土外小岛屿
美属萨摩亚
美属维尔京群岛
蒙古
蒙特塞拉特
孟加拉国
秘鲁
密克罗尼西亚
缅甸
摩尔多瓦
摩洛哥
摩纳哥
莫桑比克
墨西哥
纳米比亚
南非
南极洲
南乔治亚和南桑威奇群岛
南苏丹
瑙鲁
尼加拉瓜
尼泊尔
尼日尔
尼日利亚
纽埃
挪威
诺福克岛
帕劳
皮特凯恩群岛
葡萄牙
日本
瑞典
瑞士
萨尔瓦多
萨摩亚
塞尔维亚
塞拉利昂
塞内加尔
塞浦路斯
塞舌尔
沙特阿拉伯
圣巴泰勒米
圣诞岛
圣多美和普林西比
圣赫勒拿
圣基茨和尼维斯
圣卢西亚
圣马丁岛
圣马力诺
圣皮埃尔和密克隆群岛
圣文森特和格林纳丁斯
斯里兰卡
斯洛伐克
斯洛文尼亚
斯瓦尔巴和扬马延
斯威士兰
苏丹
苏里南
所罗门群岛
索马里
塔吉克斯坦
泰国
坦桑尼亚
汤加
特克斯和凯科斯群岛
特里斯坦-达库尼亚群岛
特立尼达和多巴哥
突尼斯
图瓦卢
土耳其
土库曼斯坦
托克劳
瓦利斯和富图纳
瓦努阿图
危地马拉
委内瑞拉
文莱
乌干达
乌克兰
乌拉圭
乌兹别克斯坦
希腊
西班牙
西撒哈拉
新加坡
新喀里多尼亚
新西兰
匈牙利
休达及梅利利亚
叙利亚
牙买加
亚美尼亚
也门
伊拉克
伊朗
以色列
意大利
印度
印度尼西亚
英国
英属维尔京群岛
英属印度洋领地
约旦
越南
赞比亚
泽西岛
乍得
直布罗陀
智利
中非共和国
*省份
*城市
*姓名
*电话
*单位
*职位
*邮箱
*请输入验证码
*验证码
B-hCXCR2 mice
Strain Name
C57BL/6-Cxcr2tm1(CXCR2)Bcgen/Bcgen 
Common Name  B-hCXCR2 mice
Background C57BL/6 Catalog number  110816
Related Genes 
C-X-C motif chemokine receptor 2, CD182, CDw128b, CMKAR2, IL8R2, IL8RA, IL8RB

Gene description

Chemokines are a group of small, mostly basic molecules that regulate cell trafficking of various leukocytes through interactions with a subset of 7-transmembrane G protein-coupled receptors. Chemokines mainly act on neutrophils, monocytes, lymphocytes, and eosinophils and play a pivotal role in host defense mechanisms. CXCR2 is a promiscuous receptor for several CXCL chemokines, including CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8. It binds to IL8 with high affinity, and transduces the signal through a G-protein activated second messenger system. This receptor also binds to chemokine (C-X-C motif) ligand 1 (CXCL1/MGSA), a protein with melanoma growth stimulating activity, and has been shown to be a major component required for serum-dependent melanoma cell growth. This receptor mediates neutrophil migration to sites of inflammation. The angiogenic effects of IL8 in intestinal microvascular endothelial cells are found to be mediated by this receptor. Knockout studies in mice suggested that this receptor controls the positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration.


mRNA expression analysis


from clipboard


Strain specific analysis of CXCR2 gene expression in WT and B-hCXCR2 mice by RT-PCR. Mouse Cxcr2 mRNA was detectable in splenocytes of wild-type (+/+) mice. Human CXCR2 mRNA was detectable only in H/H, but not in +/+ mice. 


Protein expression analysis in Gr-1+ cells in spleen 



Strain specific CXCR2 expression analysis in heterozygous B-hCXCR2 mice by flow cytometry. Splenocytes were collected from WT and heterozygous B-hCXCR2 (H/H) mice, and analyzed by flow cytometry with species-specific CXCR2 antibody. Mouse CXCR2 was detectable in WT mice and heterozygous B-hCXCR2. Human CXCR2 was exclusively detectable in heterozygous B-hCXCR2 but not WT mice.


Protein expression analysis in Gr-1+ cells in bone marrow




Strain specific CXCR2 expression analysis in homozygous B-hCXCR2 mice by flow cytometry. Splenocytes were collected from WT and homozygous B-hCXCR2 (H/H) mice, and analyzed by flow cytometry with species-specific CXCR2 antibody. Mouse CXCR2 was detectable in WT mice. Human CXCR2 was exclusively detectable in homozygous B-hCXCR2 but not WT mice.

Analysis of T cell subpopulation in spleen

from clipboard

Analysis of spleen leukocyte subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-hCXCR2 mice (n=3, 7-week-old). Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells, dendritic cells, granulocytes, monocytes and macrophages in homozygous B-hCXCR2 mice were similar to those in the C57BL/6 mice, demonstrating that CXCR2 humanized does not change the overall development, differentiation or distribution of these cell types in spleen. Values are expressed as mean ± SEM.


Analysis of T cell subpopulation in spleen


from clipboard

Analysis of spleen T cell subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-hCXCR2 mice (n=3, 7-week-old). Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for TCRβ+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD4+ T cells, CD8+ T cells and Tregs in homozygous B-hCXCR2 mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hCXCR2 in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in spleen. Values are expressed as mean ± SEM.

Analysis of leukocytes cell subpopulation in lymph node(LNs)


from clipboard

Analysis of LNs leukocyte subpopulations by FACS. LNs were isolated from female C57BL/6 and B-hCXCR2 mice (n=3, 7-week-old). Flow cytometry analysis of the LNs was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells and NK cells in homozygous B-hCXCR2 mice were similar to those in the C57BL/6 mice, demonstrating that CXCR2 humanized does not change the overall development, differentiation or distribution of these cell types in LNs. Values are expressed as mean ± SEM.


Analysis of T cell subpopulation in lymph node(LNs)


from clipboard

Analysis of LNs T cell subpopulations by FACS. LNs were isolated from female C57BL/6 and B-hCXCR2 mice (n=3, 7-week-old). Flow cytometry analysis of the LNs was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for TCRβ+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD4+ T cells, CD8+ T cells and Tregs in homozygous B-hCXCR2 mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hCXCR2 in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in LNs. Values are expressed as mean ± SEM.


Analysis of leukocytes cell subpopulation in blood


from clipboard

Analysis of blood leukocyte subpopulations by FACS. Blood were isolated from female C57BL/6 and B-hCXCR2 mice (n=3, 7-week-old). Flow cytometry analysis of the blood was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells, dendritic cells, granulocytes, monocytes and macrophages in homozygous B-hCXCR2 mice were similar to those in the C57BL/6 mice, demonstrating that CXCR2 humanized does not change the overall development, differentiation or distribution of these cell types in blood. Values are expressed as mean ± SEM.

Analysis of T cell subpopulation in blood

from clipboard

Analysis of blood T cell subpopulations by FACS. Blood were isolated from female C57BL/6 and B-hCXCR2 mice (n=3, 7-week-old). Flow cytometry analysis of the blood was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for TCRβ+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD4+ T cells, CD8+ T cells and Tregs in homozygous B-hCXCR2 mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hCXCR2 in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in blood. Values are expressed as mean ± SEM.

Efficacy Validation on IBD

from clipboard

B-hCXCR2 mice were provided drinking water containing DSS for 7 consecutive days, and body weight changes were recorded throughout and scored clinically. (Fig. A-C) The body weight changes of animals in each group. (Fig. D) DAI score (disease activity index) of animals in each group. Compared with the vehicle group (G1), the body weight in the model group (G2) was significantly decreased and the DAI score was significantly increased, which indicated that the disease severity in the model group was aggravated; On the contrary, the body weight and the DAI score were significantly improved in the treatment group (G3). The results demonstrated that the DSS-induced inflammatory bowel disease model in B-hCXCR2 mice can be established successfully, and anti-hCXCR2 antibody H3h9 (in house) relieved the clinical symptoms of IBD. Values are expressed as mean ± SEM.