请输入关键字
请输入关键字
订购
*国家
中国
美国
中国香港
中国澳门
中国台湾
阿尔巴尼亚
阿尔及利亚
阿根廷
阿拉伯联合酋长国
阿鲁巴
阿曼
阿塞拜疆
阿森松岛
埃及
埃塞俄比亚
爱尔兰
爱沙尼亚
安道尔
安哥拉
安圭拉
安提瓜和巴布达
奥地利
奥兰群岛
澳大利亚
巴巴多斯
巴布亚新几内亚
巴哈马
巴基斯坦
巴拉圭
巴勒斯坦领土
巴林
巴拿马
巴西
白俄罗斯
百慕大
保加利亚
北马里亚纳群岛
贝宁
比利时
冰岛
波多黎各
波兰
波斯尼亚和黑塞哥维那
玻利维亚
伯利兹
博茨瓦纳
不丹
布基纳法索
布隆迪
朝鲜
赤道几内亚
丹麦
德国
迪戈加西亚岛
东帝汶
多哥
多米尼加共和国
多米尼克
俄罗斯
厄瓜多尔
厄立特里亚
法国
法罗群岛
法属波利尼西亚
法属圭亚那
法属南部领地
梵蒂冈
菲律宾
斐济
芬兰
佛得角
福克兰群岛
冈比亚
刚果(布)
刚果(金)
哥伦比亚
哥斯达黎加
格恩西岛
格林纳达
格陵兰
格鲁吉亚
古巴
瓜德罗普
关岛
圭亚那
哈萨克斯坦
海地
韩国
荷兰
荷属加勒比区
荷属圣马丁
黑山
洪都拉斯
基里巴斯
吉布提
吉尔吉斯斯坦
几内亚
几内亚比绍
加拿大
加纳
加纳利群岛
加蓬
柬埔寨
捷克
津巴布韦
喀麦隆
卡塔尔
开曼群岛
科科斯(基林)群岛
科摩罗
科索沃
科特迪瓦
科威特
克罗地亚
肯尼亚
库克群岛
库拉索
拉脱维亚
莱索托
老挝
黎巴嫩
立陶宛
利比里亚
利比亚
联合国
列支敦士登
留尼汪
卢森堡
卢旺达
罗马尼亚
马达加斯加
马恩岛
马尔代夫
马耳他
马拉维
马来西亚
马里
马其顿
马绍尔群岛
马提尼克
马约特
毛里求斯
毛里塔尼亚
美国本土外小岛屿
美属萨摩亚
美属维尔京群岛
蒙古
蒙特塞拉特
孟加拉国
秘鲁
密克罗尼西亚
缅甸
摩尔多瓦
摩洛哥
摩纳哥
莫桑比克
墨西哥
纳米比亚
南非
南极洲
南乔治亚和南桑威奇群岛
南苏丹
瑙鲁
尼加拉瓜
尼泊尔
尼日尔
尼日利亚
纽埃
挪威
诺福克岛
帕劳
皮特凯恩群岛
葡萄牙
日本
瑞典
瑞士
萨尔瓦多
萨摩亚
塞尔维亚
塞拉利昂
塞内加尔
塞浦路斯
塞舌尔
沙特阿拉伯
圣巴泰勒米
圣诞岛
圣多美和普林西比
圣赫勒拿
圣基茨和尼维斯
圣卢西亚
圣马丁岛
圣马力诺
圣皮埃尔和密克隆群岛
圣文森特和格林纳丁斯
斯里兰卡
斯洛伐克
斯洛文尼亚
斯瓦尔巴和扬马延
斯威士兰
苏丹
苏里南
所罗门群岛
索马里
塔吉克斯坦
泰国
坦桑尼亚
汤加
特克斯和凯科斯群岛
特里斯坦-达库尼亚群岛
特立尼达和多巴哥
突尼斯
图瓦卢
土耳其
土库曼斯坦
托克劳
瓦利斯和富图纳
瓦努阿图
危地马拉
委内瑞拉
文莱
乌干达
乌克兰
乌拉圭
乌兹别克斯坦
希腊
西班牙
西撒哈拉
新加坡
新喀里多尼亚
新西兰
匈牙利
休达及梅利利亚
叙利亚
牙买加
亚美尼亚
也门
伊拉克
伊朗
以色列
意大利
印度
印度尼西亚
英国
英属维尔京群岛
英属印度洋领地
约旦
越南
赞比亚
泽西岛
乍得
直布罗陀
智利
中非共和国
*省份
*城市
*姓名
*电话
*单位
*职位
*邮箱
*请输入验证码
*验证码
B-hEGFR mice
Strain Name
C57BL/6-Egfrtm2(EGFR)Bcgen/Bcgen  
Common Name  B-hEGFR mice
Background C57BL/6 Catalog number 120771
Aliases

EGFR, ERBB, ERBB1, ERRP, HER1, NISBD2, PIG61, 

mENA, epidermal growth factor receptor

mRNA expression analysis

from clipboard


Strain specific analysis of EGFR gene expression in wild type (WT) mice and B-hEGFR mice by RT-PCR. Mouse Egfr mRNA was detectable only in liver of WT mice (+/+). Human EGFR mRNA was detectable only in homozygous B-hEGFR mice (H/H) but not in WT mice (+/+).


IHC analysis of EGFR expression

from clipboard


Immunohistochemical (IHC) analysis of EGFR expression in homozygous B-hEGFR mice. The liver and kidney were collected from WT and homozygous B-hEGFR mice (H/H) and analyzed by IHC with anti-EGFR antibody. Mouse EGFR was detectable in WT mice, and human EGFR was detectable in homozygous B-hEGFR mice. The arrow indicates tissue cells with positive EGFR staining (brown).


Protein expression profile of EGFR


from clipboard

Immunohistochemical (IHC) analysis of EGFR protein expression in wild-type (WT) mice and B-hEGFR mice. Ten major tissues were collected from WT mice and homozygous B-hEGFR mice (2 females, 8 weeks-old), and analyzed by IHC with anti-EGFR antibodies. Humanized EGFR was detected in the heart (A), liver (B), lung (D), kidney (E), esophagus (F), thyroid (G), skin (H), ovary (I) and uterus (J) of homozygous B-hEGFR mice (Figure 2) and human EGFR positive control (K), but not in spleen (C) and human EGFR negative control (L). This is similar to the mouse EGFR expression profile of WT mice (Figure 1, Table 1). The results showed that humanized EGFR did not change the expression site of EGFR protein in B-hEGFR mice, and the expression profile of EGFR in B-hEGFR mice was similar to that in normal human tissues (Table 1). 


Hematology analysis

from clipboard

Complete blood count (CBC) of B-hEGFR mice. Values are expressed as mean ± SD.


Biochemistry analysis


from clipboard

Biochemical test of B-hEGFR mice. Values are expressed as mean ± SD.


In vivo efficacy of anti-human EGFR antibodies 

from clipboard

Antitumor activity of anti-human EGFR antibody in B-hEGFR mice. (A) Anti-human EGFR antibody inhibited B-Tg(hEGFR) MC38 tumor growth in homozygous B-hEGFR mice. Murine colon cancer B-Tg(hEGFR) MC38 cells were subcutaneously implanted into homozygous B-hEGFR mice (female, 6-8 weeks-old, n=6). Mice were grouped when tumor volume reached approximately 50-150 mm3, at which time they were intravenous injected with anti-human EGFR ADC cetuximab analog-MMAE (in house) indicated in panel. (B) Body weight changes during treatment. As shown in panel A, 30mg/kg anti-human EGFR ADC cetuximab analog-MMAE (in house) treatment group was efficacious in controlling tumor growth in B-hEGFR mice, demonstrating that the B-Tg(hEGFR) MC38 provide a powerful preclinical model for in vivo evaluation of anti-human EGFR antibodies. Values are expressed as mean ± SEM. 


In vivo efficacy of anti-human EGFR antibodies-individual tumor growth curves 

from clipboard

Antitumor activity of anti-human EGFR antibody in B-hEGFR mice. Anti-human EGFR antibody inhibited B-Tg(hEGFR) MC38 tumor growth in homozygous B-hEGFR mice. Murine colon cancer B-Tg(hEGFR) MC38 cells were subcutaneously implanted into homozygous B-hEGFR mice (female, 6-8 weeks-old, n=6). Mice were grouped when tumor volume reached approximately 50-150 mm3, at which time they were intravenous injected with anti-human EGFR ADC cetuximab analog-MMAE (in house) indicated in panel.


Toxicity analysis of anti-human EGFR antibody in B-hEGFR mice

from clipboard

Anti-human EGFR antibody cetuximab biosimilar (Bio X Cell, 907623J2) or panitumumab (Takeda, 549661) were intravenously injected into B-hEGFR mice (male, 14-15 weeks-old, n=6). Mice were weighed twice a week, and their condition was observed daily. At the end of the experiment, blood samples were collected for complete blood count test. Additionally, tissue samples were collected from the nasal and oral skin, abdominal skin, stomach, duodenum, jejunum, ileum, cecum, colon, and rectum, and then subjected to pathological analysis. (A) Body weight and body weight changes during treatment. The results showed that 45.0 mg/kg cetuximab biosimilar and 30.0 mg/kg panitumumab resulted in significant weight loss in B-hEGFR mice. Values are expressed as mean ± SEM. 
Note: This experiment is a collaboration with the client.


from clipboard

Anti-human EGFR antibody cetuximab biosimilar (Bio X Cell, 907623J2) or panitumumab (Takeda, 549661) were intravenously injected into B-hEGFR mice (male, 14-15 weeks-old, n=6). Mice were weighed twice a week, and their condition was observed daily. At the end of the experiment, blood samples were collected for complete blood count test. Additionally, tissue samples were collected from the nasal and oral skin, abdominal skin, stomach, duodenum, jejunum, ileum, cecum, colon, and rectum, and then subjected to pathological analysis. (B) Complete blood cell count detection at the endpoint of the experiment. 45.0 mg/kg cetuximab biosimilar and 30.0 mg/kg panitumumab resulted in an increase in the number of neutrophils and monocytes, while there were no significant changes in blood parameters in the other treatment groups. Values are expressed as mean ± SD. Significance was determined by one-way ANOVA test. *p<0.05, **p<0.01. 
Note: This experiment is a collaboration with the client.


from clipboard

(C) Pathological diagrams of various tissues. The histopathological examination in muzzle skin revealed article-related alteration in cetuximab biosimilar 45 mg/kg dose group (1/6, minimal), which showed squamous epithelial cells proliferation and subcutaneous infiltration of inflammatory cells. The similar article-related changes were also found in panitumumab group (5/6, minimal). Squamous epithelial cells proliferation in stomach limiting ridge were observed in mice administrated cetuximab biosimilar at the dose of 12.5 mg/kg (4/6, minimal) and 45 mg/kg groups (2/6, minimal; 4/6, slight), which were considered test-article and dose related. The similar article-related changes were also found in panitumumab group (3/6, minimal; 3/6, slight). Neither cetuximab biosimilar nor panitumumab showed any toxicity in the abdominal skin, duodenum, jejunum, ileum, cecum, colon, and rectum of mice (The data is not shown). 
Note: This experiment is a collaboration with the client.


from clipboard


Toxicokinetic analysis of anti-human EGFR antibody in B-hEGFR mice 


from clipboard

Anti-human EGFR antibody cetuximab biosimilar (Bio X Cell, 907623J2) or panitumumab (Takeda, 549661) were intravenously injected into B-hEGFR mice (male, 14-15 weeks-old, n=2). Blood samples were collected at 1h, 8h, 24h, 48h, 96h, and 168h after the first and fourth doses, and then the drug concentrations in the blood were measured. As shown in the figure, with the increase of dosage, the blood concentration of cetuximab biosimilar also increases. This indicates that the relationship between the blood concentration of cetuximab biosimilar and dosage is linear within the experimental dosage range. The existence of this linear relationship may be due to the absence of saturation during the absorption, distribution, metabolism, and excretion of drugs in mice.
Note: This experiment is a collaboration with the client.