请输入关键字
请输入关键字
订购
*国家
中国
美国
中国香港
中国澳门
中国台湾
阿尔巴尼亚
阿尔及利亚
阿根廷
阿拉伯联合酋长国
阿鲁巴
阿曼
阿塞拜疆
阿森松岛
埃及
埃塞俄比亚
爱尔兰
爱沙尼亚
安道尔
安哥拉
安圭拉
安提瓜和巴布达
奥地利
奥兰群岛
澳大利亚
巴巴多斯
巴布亚新几内亚
巴哈马
巴基斯坦
巴拉圭
巴勒斯坦领土
巴林
巴拿马
巴西
白俄罗斯
百慕大
保加利亚
北马里亚纳群岛
贝宁
比利时
冰岛
波多黎各
波兰
波斯尼亚和黑塞哥维那
玻利维亚
伯利兹
博茨瓦纳
不丹
布基纳法索
布隆迪
朝鲜
赤道几内亚
丹麦
德国
迪戈加西亚岛
东帝汶
多哥
多米尼加共和国
多米尼克
俄罗斯
厄瓜多尔
厄立特里亚
法国
法罗群岛
法属波利尼西亚
法属圭亚那
法属南部领地
梵蒂冈
菲律宾
斐济
芬兰
佛得角
福克兰群岛
冈比亚
刚果(布)
刚果(金)
哥伦比亚
哥斯达黎加
格恩西岛
格林纳达
格陵兰
格鲁吉亚
古巴
瓜德罗普
关岛
圭亚那
哈萨克斯坦
海地
韩国
荷兰
荷属加勒比区
荷属圣马丁
黑山
洪都拉斯
基里巴斯
吉布提
吉尔吉斯斯坦
几内亚
几内亚比绍
加拿大
加纳
加纳利群岛
加蓬
柬埔寨
捷克
津巴布韦
喀麦隆
卡塔尔
开曼群岛
科科斯(基林)群岛
科摩罗
科索沃
科特迪瓦
科威特
克罗地亚
肯尼亚
库克群岛
库拉索
拉脱维亚
莱索托
老挝
黎巴嫩
立陶宛
利比里亚
利比亚
联合国
列支敦士登
留尼汪
卢森堡
卢旺达
罗马尼亚
马达加斯加
马恩岛
马尔代夫
马耳他
马拉维
马来西亚
马里
马其顿
马绍尔群岛
马提尼克
马约特
毛里求斯
毛里塔尼亚
美国本土外小岛屿
美属萨摩亚
美属维尔京群岛
蒙古
蒙特塞拉特
孟加拉国
秘鲁
密克罗尼西亚
缅甸
摩尔多瓦
摩洛哥
摩纳哥
莫桑比克
墨西哥
纳米比亚
南非
南极洲
南乔治亚和南桑威奇群岛
南苏丹
瑙鲁
尼加拉瓜
尼泊尔
尼日尔
尼日利亚
纽埃
挪威
诺福克岛
帕劳
皮特凯恩群岛
葡萄牙
日本
瑞典
瑞士
萨尔瓦多
萨摩亚
塞尔维亚
塞拉利昂
塞内加尔
塞浦路斯
塞舌尔
沙特阿拉伯
圣巴泰勒米
圣诞岛
圣多美和普林西比
圣赫勒拿
圣基茨和尼维斯
圣卢西亚
圣马丁岛
圣马力诺
圣皮埃尔和密克隆群岛
圣文森特和格林纳丁斯
斯里兰卡
斯洛伐克
斯洛文尼亚
斯瓦尔巴和扬马延
斯威士兰
苏丹
苏里南
所罗门群岛
索马里
塔吉克斯坦
泰国
坦桑尼亚
汤加
特克斯和凯科斯群岛
特里斯坦-达库尼亚群岛
特立尼达和多巴哥
突尼斯
图瓦卢
土耳其
土库曼斯坦
托克劳
瓦利斯和富图纳
瓦努阿图
危地马拉
委内瑞拉
文莱
乌干达
乌克兰
乌拉圭
乌兹别克斯坦
希腊
西班牙
西撒哈拉
新加坡
新喀里多尼亚
新西兰
匈牙利
休达及梅利利亚
叙利亚
牙买加
亚美尼亚
也门
伊拉克
伊朗
以色列
意大利
印度
印度尼西亚
英国
英属维尔京群岛
英属印度洋领地
约旦
越南
赞比亚
泽西岛
乍得
直布罗陀
智利
中非共和国
*省份
*城市
*姓名
*电话
*单位
*职位
*邮箱
*请输入验证码
*验证码
B-Tg(hEGFR) MC38
Common name
B-Tg(hEGFR) MC38 Catalog number    322295
Aliases

EGFR, ERBB, ERBB1, ERRP, HER1, NISBD2, 

PIG61, mENA, epidermal growth factor receptor

Disease  Colon carcinoma
Organism
Mouse 
Strain  C57BL/6
Tissue types Colon Tissue  Colon

Description



  • Origin: The MC38 cell line is derived from C57BL6 murine colon adenocarcinoma cells. The cell line is a commonly used murine model for colorectal carcinoma.
  • Background Information: EGFR is widely distributed on the surfaces of epithelial cells, fibroblasts, and other cell types in mammals. It is activated by binding to ligands such as EGF, leading to dimerization. The activation of EGFR can promote the growth and differentiation of various cells, including during embryonic development, the maintenance and repair of adult tissues, as well as the proliferation and metastasis of cancer cells. EGFR is one of the most classic targets in the field of anti-tumor therapy. EGFR-targeted drugs use various mechanisms to inhibit EGFR activation, suppress the EGFR signaling pathway, and thereby block cellular signal transduction, ultimately inhibiting the proliferation and metastasis of tumor cells.
  • Gene targeting strategy: The expression cassette containing an exogenous promoter, the extracellular region of human EGFR, and the transmembrane and intracellular regions of mouse Egfr was randomly inserted into the genome of B-Tg(hEGFR) MC38 cells. 
  • Tumorigenicity: Confirmed in B-hEGFR mice and B-h4-1BB/hEGFR mice.
  • Application: The B-Tg(hEGFR) MC38 tumor models can be used for preclinical evaluation of The B-Tg(hEGFR) MC38 tumor models can be used for preclinical evaluation of anti-human EGFR antibodies.
  • Notes: 
  1. B-Tg(hEGFR) MC38 #1-E02 can not establish tumors in wild-type C57BL/6 mice, and only in EGFR related humanized mice. 
  2. B-Tg(hEGFR) MC38 cells simultaneously express humanized EGFR and EGFP. If detecting the expression of humanized EGFR, it is necessary to choose an appropriate flow channel.


Protein expression analysis 

from clipboard


EGFR expression analysis in B-Tg(hEGFR) MC38 cells by flow cytometry. Single cell suspensions from wild-type MC38 and B-Tg(hEGFR) MC38 cultures were stained with species-specific anti-EGFR antibody. Human EGFR was detected on the surface of B-Tg(hEGFR) MC38 cells but not wild-type MC38 cells. The 1-E02 clone of B-Tg(hEGFR) MC38 cells was used for in vivo tumor growth assays.

Tumor growth curve & body weight changes

from clipboard


Subcutaneous tumor growth of B-Tg(hEGFR) MC38 cells. B-Tg(hEGFR) MC38 cells (5x105) and wild-type MC38 cells (5x105) were subcutaneously implanted into homozygous B-hEGFR mice (female, 6-9 weeks-old, n=6). Tumor volume and body weight were measured twice a week. (A) Average tumor volume. (B) Body weight. Volume was expressed in mm3 using the formula: V=0.5 X long diameter X short diameter2. Results indicate that B-Tg(hEGFR) MC38 cells were able to establish tumors in vivo and can be used for efficacy studies. Values are expressed as mean ± SEM. 

Protein expression analysis of tumor tissue

from clipboard


EGFR expression evaluated on B-Tg(hEGFR) MC38 tumor cells by flow cytometry. B-Tg(hEGFR) MC38 cells were subcutaneously transplanted into homozygous B-hEGFR mice (n=6). Upon conclusion of the experiment, tumor cells were harvested and analyzed with anti-human EGFR antibody by flow cytometry. As shown, human EGFR was highly expressed on the surface of tumor cells. Therefore, B-Tg(hEGFR) MC38 cells can be used for in vivo efficacy studies evaluating novel EGFR therapeutics.

Tumor growth curve & body weight changes

from clipboard


Subcutaneous tumor growth of B-Tg(hEGFR) MC38 cells. B-Tg(hEGFR) MC38 cells (5x105, 1x106) and wild-type MC38 cells (5x105) were subcutaneously implanted into homozygous B-hEGFR mice (female, 5-8 weeks-old, n=6). Tumor volume and body weight were measured twice a week. (A) Average tumor volume. (B) Body weight. Volume was expressed in mm3 using the formula: V=0.5 X long diameter X short diameter2. Results indicate that B-Tg(hEGFR) MC38 cells were able to establish tumors in vivo and can be used for efficacy studies. Values are expressed as mean ± SEM. 

Tumor growth curve & body weight changes

from clipboard


Subcutaneous tumor growth of B-Tg(hEGFR) MC38 cells. B-Tg(hEGFR) MC38 cells (5x105) and wild-type MC38 cells (5x105) were subcutaneously implanted into heterozygous B-h4-1BB/hEGFR mice (male, 6 weeks-old, n=5). Tumor volume and body weight were measured twice a week. (A) Average tumor volume. (B) Body weight. Volume was expressed in mm3 using the formula: V=0.5 X long diameter X short diameter2. Results indicate that B-Tg(hEGFR) MC38 cells were able to establish tumors in vivo and can be used for efficacy studies. Values are expressed as mean ± SEM. 

In vivo efficacy of anti-human EGFR antibodies 

from clipboard

Antitumor activity of anti-human EGFR antibody in B-hEGFR mice. (A) Anti-human EGFR antibody inhibited B-Tg(hEGFR) MC38 tumor growth in homozygous B-hEGFR mice. Murine colon cancer B-Tg(hEGFR) MC38 cells were subcutaneously implanted into homozygous B-hEGFR mice (female, 6-8 weeks-old, n=6). Mice were grouped when tumor volume reached approximately 50-150 mm3, at which time they were intravenous injected with anti-human EGFR ADC cetuximab analog-MMAE (in house) indicated in panel. (B) Body weight changes during treatment. As shown in panel A, 30mg/kg anti-human EGFR ADC cetuximab analog-MMAE (in house) treatment group was efficacious in controlling tumor growth in B-hEGFR mice, demonstrating that the B-Tg(hEGFR) MC38 provide a powerful preclinical model for in vivo evaluation of anti-human EGFR antibodies. Values are expressed as mean ± SEM. 


In vivo efficacy of anti-human EGFR antibodies-individual tumor growth curves 

from clipboard

Antitumor activity of anti-human EGFR antibody in B-hEGFR mice. Anti-human EGFR antibody inhibited B-Tg(hEGFR) MC38 tumor growth in homozygous B-hEGFR mice. Murine colon cancer B-Tg(hEGFR) MC38 cells were subcutaneously implanted into homozygous B-hEGFR mice (female, 6-8 weeks-old, n=6). Mice were grouped when tumor volume reached approximately 50-150 mm3, at which time they were intravenous injected with anti-human EGFR ADC cetuximab analog-MMAE (in house) indicated in panel.